
Iterative methods

Consider the linear system

Ax = b

Iterative methods start from an initial guess x (0) and construct a
sequence of approximate solutions {x (k)} such that

x = lim
k→∞

x (k).

Splitting methods
The matrix A is split as

A = M − N

Splitting methods go like

x (0) given solve Mx (k) = b + Nx (k−1) k = 1, 2, · · · (1)

With iterative methods we give up the idea of computing the exact
solution, but we want low operational costs. In particular:

the system (1) must be much easier to deal with than the
original system Ax = b, that is, the matrix M must be as
simple as possible, and of course non-singular;

the sequence {x (k)} must converge to x for any initial guess
x (0);

the convergence must be fast.

Different choices for M give rise to different iterative methods.

Jacobi method

take M = diag(A) (and hence N = M − A), applicable if
aii 6= 0 ∀i . At each iteration k we have to solve a diagonal system
a11 0 · · · 0
0 a22 · · · 0

0 · · ·
. . . 0

0 · · · ann



x
(k)
1

x
(k)
2
...

x
(k)
n

 =


b1
b2
...
bn

−


0 a12 · · · a1n
a21 0 · · · a2n

...
...

. . .
...

an1 an2 · · · 0



x
(k−1)
1

x
(k−1)
2

...

x
(k−1)
n


Thus we obtain

x
(k)
i =

(
bi −

i−1∑
j=1

aijx
(k−1)
j −

n∑
j=i+1

aijx
(k−1)
j

)
/aii i = 1, · · · , n

The number of operations for each component is ∼ 2n, so that the
cost for one Jacobi iteration is ∼ 2n2.

Gauss-Seidel method
take M = tril(A), applicable if aii 6= 0 ∀i . At each iteration k we
have to solve a lower triangular system
a11 0 · · · 0
a21 a22 · · · 0

...
...

. . .
...

an1 · · · ann



x
(k)
1

x
(k)
2
...

x
(k)
n

 =


b1
b2
...
bn

−


0 a12 · · · a1n
0 0 · · · a2n
...

...
. . .

...
0 0 · · · 0



x
(k−1)
1

x
(k−1)
2

...

x
(k−1)
n


Thus we obtain

x
(k)
i =

(
bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

)
/aii i = 1, · · · , n

The difference with respect to Jacobi method is in the first sum of

the formula, where the updated x
(k)
j are used instead of the old

x
(k−1)
j . The number of operations is exactly the same: for each

component is ∼ 2n, so that the cost for one Gauss-Seidel iteration
is ∼ 2n2.

Convergence analysis for splitting methods

In all cases we want convergence for any initial guess x (0). With
paper and pencil we study the error at each iteration.
Let e(k) = x − x (k) be the error at the kth iteration.
Since x and x (k) are solutions of

Mx = b + Nx , Mx (k) = b + Nx (k−1),

by subtracting we get

M(x − x (k)) = N(x − x (k−1)) =⇒ e(k) =M−1N︸ ︷︷ ︸ e(k−1)
B

where B = M−1N is the iteration matrix.

e(k) = Be(k−1) k = 1, 2, · · · , =⇒ e(k) = Bke(0).

If we want lim
k→∞

e(k) = 0 we need lim
k→∞

Bk = 0.

Convergent matrices

A matrix B ∈ Rn×n is convergent if

lim
k→∞

Bk = 0,

where 0 is the matrix identically zero. Then:

Lemma 1
Let B ∈ Rn×n. We have

lim
k→∞

Bk = 0 ⇐⇒ max
i
|λi (B)| < 1.

The proof is not trivial for a generic B.

A useful property of natural norm of matrices

Lemma 2
Let |||A||| be any natural norm of matrix. Then

max
i
|λi (A)| ≤ |||A||| ∀A ∈ Rn×n.

Proof.
Let λ be an eigenvalue of A, and let v 6= 0 an eigenvector
associated to λ, that is Av = λv . From the properties of the
norms we immediately have

|λ|‖v‖ = ‖λv‖ = ‖Av‖ ≤ |||A|||‖v‖,

then |λ|‖v‖ ≤ |||A|||‖v‖, and then |λ| ≤ |||A|||.
The quantity maxi |λi (A)| is called the spectral radius of A, and
denoted as ρ(A).

the matrix ||| · |||∞ norm

Given BEIR
""

,
11113111 a := sup

11B¥ = Max É /Bi
, / .

pecan
Hill • i 5--1

proof of the last equivalence :

11 Bulla . Max /Phil - Mia 1¥ ,
Bir /i

←

miax § 113,11%1 £1101b wax -71 Bit
i

therefore 1113,11¥
,

⇐
may § 1 Bist

and seep "{¥¥• ⇐
mail § 1 Big /

VER
"

the matrix ||| · |||∞ norm

on the other hand
,
let i* the index suck that

§ / Big / = miax § / Be:|
then

, selecting Wj -_ sign Big
,
since hWH• -1

,

we have

wiax } / Bist - § / Bias / = ? Big W, =/ F- Big W, /
£
maix IF Bisws / = 1113W 11

•

= "Yw"÷ ← sup "%÷: - NBA .
VER

"

Classes of matrices for which we have convergence results

Lemma 3
If A is diagonally dominant, i.e.,

|aii | >
n∑

j=1
j 6=i

|aij | ∀i = 1, 2, · · · , n

both Jacobi and Gauss-Seidel converge.

Proof.
We shall prove the Lemma for Jacobi method. The iteration
matrix BJ is given by

BJ =


0 −a12

a11
· · · −a1n

a11
−a21
a22

0 · · · −a2n
a22

...
...

. . .
...

−an1
ann

−an2
ann

· · · 0


Since A is diagonally dominant, |||BJ |||∞ = max

i

∑
j 6=i

|
aij
aii
| < 1, and

we deduce (from Lemma 1) that maxi |λi (BJ)| < 1.

Lemma 4
If A is symmetric and positive definite Gauss-Seidel converges.
Jacobi might or might not converge.

Stopping criteria

As usual with iterative procedures, we need sound stopping criteria
to decide when to stop. Given a tolerance τ for example ∼ 10−3,
or 10−4)

• test on the iterates: at each iteration check if

‖x (k) − x (k−1)‖
‖x (k−1)‖

≤ τ

for some norm of vectors;
• test on the residual: when the test on the iterates is satisfied,
check if

‖r (k)‖
‖b‖

≤ τ (r (k) := b − Ax (k) is the residual)

When both are satisfied, stop and take x (k) as solution.

Pseudocode for splitting methods

Mx (k) = b + Nx (k−1) = b + (M − A)x (k−1)

= b − Ax (k−1) + Mx (k−1)

=⇒ x (k) = x (k−1) + M−1r (k−1)

M is usually referred as a preconditioner.

Splitting ietartive method

Input: A ∈ Rn×n and b ∈ Rn

Choose M ∈ Rn×n, x (0) ∈ Rn and set r (0) = b − Ax (0)

for k = 1, 2, . . . , until convergence:
Solve Mp(k−1) = r (k−1)

x (k) = x (k−1) + p(k−1)

r (k) = b − Ax (k)

end

Error analysis
Unfortunately, the fact that the residual is small does not
guarantee that the error x − x (k) is small.

r (k) := b − Ax (k) = Ax − Ax (k) −→ x − x (k) = A−1r (k).

Taking the norm in both sides we have

‖x − x (k)‖ = ‖A−1r (k)‖ ≤ |||A−1||| ‖r (k)‖

≤ |||A−1||| ‖r
(k)‖
‖b‖

‖Ax‖ ≤ |||A−1||| |||A||| ‖x‖‖r
(k)‖
‖b‖

.

Then we obtain

‖x − x (k)‖
‖x‖

≤ |||A−1||| |||A|||‖r
(k)‖
‖b‖

.

If the number κ(A) := |||A−1||| |||A||| is big there is no control on
the error, no matter how small the residual is. κ(A) is called
“condition number of A’’, and if κ(A) >> 1 the matrix is said to
be ill-conditioned.

Concept of conditioning

When dealing with ill-conditioned matrices, any numerical method
(direct or iterative) might produce unsatisfactory results.

Roughly speaking, a problem is well-conditioned if “small”
perturbations on the data determine “small” perturbations on the
results.

To clarify the concept of conditioning of a problem, let us consider
a generic problem: find u solution of

(P) F (u, d) = 0,

where d are the data, and F is the law relating u to d .

Concept of conditioning

More precisely, let u be the solution of the problem

(P) F (u, d) = 0

corresponding to data d , and let δd be a perturbation on the
data. Denote by δu the corresponding perturbation on the solution
u. Then, instead of solving (P) we are solving

(P̃) F (u + δu, d + δd) = 0.

Assuming (P) is well-posed (that is, there exists a unique the
solution for any given datum), we define its (relative) condition
number as the smallest constant κ > 0 that satisfies

‖δu‖
‖u‖

≤ κ‖δd‖
‖d‖

Example: conditioning of the linear system Ax = b

Consider a simple case: assume that the possible errors are only on
the right-hand side (and not on the matrix). Let δb be the error
on b, and let x̃ = x + δx be the solution for the right-hand side
b̃ = b + δb, that is:

Ax = b and A(x + δx) = b + δb,

subtracting we get Aδx = δb and therefore δx = A−1δb.
Proceeding as we did before we have

‖δx‖ = ‖A−1δb‖ ≤ |||A−1|||‖δb‖ = |||A−1|||‖δb‖
‖b‖
‖b‖

= |||A−1|||‖δb‖
‖b‖
‖Ax‖ ≤ |||A−1|||‖δb‖

‖b‖
|||A|||‖x‖

We found

‖δx‖
‖x‖

≤ |||A−1||| |||A|||‖δb‖
‖b‖

= κ(A)
‖δb‖
‖b‖

A simple example to understand how a big condition number
might affect the results.(

106 10−12

0 10−6

)(
x1
x2

)
=

(
106

10−6

)
Exact solution x2 = 1, x1 ' 1;κ∞(A) ' 1012. Now perturb only
the first component of the right-hand side by 10−6, and then only
the second component by 10−6. In both cases
‖δb‖∞/‖b‖∞ ≤ 10−12. What happens to the solution?

An approach for symmetric positive definite matrices

We now assume that the system matrix is symmetric and positive
definite (SPD), and discuss a different iterative approach.
Recall the problem we want to solve: given b ∈ Rn, and
A ∈ Rn × Rn, we look for x∗ ∈ Rn solution of

Ax∗ = b (2)

Since A is SPD, we can define a scalar product associated with
A : (Ax , y) = yTAx . If A is also positive definite, then

(Ax , x) > 0 ∀x 6≡ 0.

Then we can introduce the functional F : Rn → R defined as:

F (v) :=
1

2
(Av , v)− (b, v) ∀v ∈ Rn (3)

Theorem 5
If A ∈ Rn × Rn is SPD, problem (2) has a unique solution, and is
equivalent to the following minimum problem for the functional
defined in (3): {

find u ∈ Rn such that

F (u) ≤ F (v) ∀v ∈ Rn (4)

(that is, (4) has a unique solution u ∈ Rn, and u ≡ x∗).

Proof.
Since A is positive definite, problem (2) has a unique solution
(det(A) 6= 0). Now, F is a quadratic functional (hence,
differentiable), and

∇F (v) =



∂F

∂v1

∂F

∂v2
...
∂F

∂vn


= Av−b H(F) = A (H(F) = Hessian matrix)

Since A is positive definite, the matrix H(F) has positive
eigenvalues (and real because A is symmetric). Hence, F is strictly
convex, that is, it has a unique minimum. Let u ∈ Rn be the point
of minimum. As such, it verifies

∇F (u) = 0 −→ Au − b = 0.

Since the solution of (2) is unique, u ≡ x∗.

Descent Methods

Given the equivalence between the linear system (2) and the
minimum problem (4), we look for x∗ as minimum point for F (x).

Starting from an initial guess x (0) (any), we want to construct a
sequence x (k) converging to x∗ in the following way:

x (0)given. Then, for k = 1, 2, · · · set x (k+1) = x (k) + αkp
(k)

• p(k) are directions of descent,

• αk are numbers that tell us how much to descent along p(k).
They have to be chosen to guarantee descent, that is, to guarantee
that

F (x (k+1)) < F (x (k)) ∀k .

Descent methods

The optimal value of αk can be computed by imposing

∂

∂α
F (x(k) + αp(k)) = 0

which guarantees maximum descent along F . Indeed,

F (x(k) + αp(k)) =
1

2

(
A(x(k) + αp(k)), x(k) + αp(k)

)
−

(
b, x(k) + αp(k)

)
=

α2

2

(
Ap(k), p(k)

)
+ α

(
Ax(k) − b, p(k)

)
+

(
1

2
Ax(k) − b, x(k)

)
With respect to the variable α, this function is an U-shaped parabola (it has a unique
minimum).

∂

∂α
F (x(k) + αp(k)) = α

(
Ap(k), p(k)

)
+

(
Ax(k) − b, p(k)

)
= 0

αk = optimal α =
(b − Ax(k), p(k))

(Ap(k), p(k))
=

(r (k), p(k))

(Ap(k), p(k))

Gradient method: the “steepest descent”
the gradient ∇F (x (k)) gives the direction and rate of fastest
increase at a point x (k). Since we want to minimize, it make
sense to go in the direction of fastest decrease, that is,
steepest descent

p(k) = −∇F (x (k)) = b − Ax (k) = r (k)

The steepest descent method converges for all initial guess
x (0). Moreover it holds:∥∥∥x − x (k)

∥∥∥
A
≤
(
κ2 (A)− 1

κ2 (A) + 1

)k ∥∥∥x − x (0)
∥∥∥
A

where ‖v‖A =
√
vTAv is the A−norm. The formula above

says that convergence is guaranteed, but can be very slow if A
is ill-conditioned (indeed κ2 (A) very large means that(
κ2(A)−1
κ2(A)+1

)
is very close to 1).

Pseudocode for Steepest Descent Method

Steepest Descent Method

Input: A ∈ Rn×n SPD, b ∈ Rn, x (0) ∈ Rn, tol ∈ R+, maxiter ∈ N
r (0) = b − Ax (0)

for k = 1, 2, . . . , maxiter:
y = Ar (k−1)

αk−1 =
(
r (k−1), r (k−1)

)
/
(
y , r (k−1)

)
x (k) = x (k−1) + αk−1r

(k−1)

r (k) = b − Ax (k) = r (k−1) − αk−1y
If Stopping criteria are satisfied exit the loop

end
Output: x (k)

Like for all iterative methods, the dominant computational cost at
each iteration is given by the matrix-vector product with A, that
costs about 2n2 FLOPs (n2 multiplications and ∼ n2 sums).

Summary and extensions of gradient methods...

We have our functional F (v) := 1
2(Av , v)− (b, v) to minimize and

use x (k+1) = x (k) + αkp
(k), where p(k) = −∇F (x (k)) = b − Ax (k).

Possible alternatives are:

to simplify the calculation of p(k) = −∇F (x (k)), e.g. in the
stochastic gradient descent method, used in machine
learning: we save time per each iteration at the expenses of
an increased number of iterations to reach a given accuracy;

to find better descent directions p(k), such that the
convergence at a given tolerance requires less iterations, as in
the conjugate gradient method

Summary and extensions of gradient methods...

We have our functional F (v) := 1
2(Av , v)− (b, v) to minimize and

use x (k+1) = x (k) + αkp
(k), where p(k) = −∇F (x (k)) = b − Ax (k).

Possible alternatives are:

to simplify the calculation of p(k) = −∇F (x (k)), e.g. in the
stochastic gradient descent method, used in machine
learning: we save time per each iteration at the expenses of
an increased number of iterations to reach a given accuracy;

to find better descent directions p(k), such that the
convergence at a given tolerance requires less iterations, as in
the conjugate gradient method

Steepest descents vs. Conjugate Gradient

Conjugate Gradient method

with p(0) = −∇F (x (0)), at each iteration k take p(k) in the plane

span{r (k), p(k−1)}

p(k) = r (k) + βkp
(k−1)

where βk is chosen so that p(k) is A−orthogonal to p(k−1), i.e.(
p(k)

)T
Ap(k−1) = 0 (orthogonal in the scalar product associated

with A). It can be proven that(
p(k)

)T
Ap(j) = 0, j = 1, . . . , k − 1.

This approach is faster than the steepest descent. Actually, the
method converges in less than n iterations (n=dimension of the
system), so it can be considered a direct method.

Matlab function: x =pcg(A, b, ...)

Pseudocode for Conjugate Gradient Method

Conjugate Gradient Method

Input: A ∈ Rn×n SPD, b ∈ Rn, x (0) ∈ Rn, tol ∈ R+, maxiter ∈ N
r (0) = b − Ax (0)

p(0) = r (0)

for k = 1, 2, . . . , maxiter:
y = Ap(k−1)

αk−1 =
(
p(k−1), r (k−1)

)
/
(
y , p(k−1)

)
x (k) = x (k−1) + αk−1p

(k−1)

r (k) = b − Ax (k) = r (k−1) − αk−1y

βk−1 =
(
y , r (k)

)
/
(
y , p(k−1)

)
p(k) = r (k) − βk−1p(k−1)
If Stopping criteria are satisfied exit the loop

end
Output: x (k)

Convergence of the Conjugate Gradient Method
We have the following bound on the relative error for CG:

∥∥∥x − x (k)
∥∥∥
A
≤ 2

(√
κ2 (A)− 1√
κ2 (A) + 1

)k ∥∥∥x − x (0)
∥∥∥
A

recalling that, when A is SPD, it holds

κ2 (A) := ‖A‖
∥∥A−1∥∥ =

λmax (A)

λmin (A)

Then the larger κ2 (A) is, the slower the method converges,
however, it should be noted that if we compare:

the reducing factor of k Steepest Descend iterations:(
κ2(A)−1
κ2(A)+1

)k
and

the reducing factor of k Conjugate Gradient iter.:

2

(√
κ2(A)−1√
κ2(A)+1

)k

we see that Conjugate Gradient is more favourable.

Preconditioners
To speedup the convergence, we can use a preconditioner. In this case, the
original linear system Ax = b with the equivalent one

P−1Ax = P−1b

where P is a nonsingular matrix called preconditioner.

A good preconditioner has two features:

An iterative method applied to the new system should converge in less
iterations than for the original system. This typically means that the
eigenvalues of P−1A should be clustered (in the case of CG, this means
λmax(P

−1A) ≈ λmin(P−1A)).

At each iteration of an iterative method we need to compute a
matrix-vector product with the system matrix. In the preconditioned case,
this is done in two steps

v −→ Av −→ P−1 (Av)

Thus, computing matrix-vector products with P−1 (or equivalently
solving a linear system with P) should be fast. Note that we never need
to compute the matrix P−1A explicitly.

Preconditioners

Hence a good preconditioner P should be as similar as
possible to A, while being easy to invert:

Let us consider two extreme cases: P = In and P = A

- If P = A, P−1A = In and any iterative method would converge
in just 1 iteration (note that λmax(P−1A) = λmin(P−1A) = 1).
On the other hand, applying P−1 is as difficult as solving the
original system.

- If P = In, then applying P−1 has no cost. On the other hand
P−1A = A, so there is no reduction in the number od
iterations.

A good preconditioner should find a balance between these
two extremes.

Preconditioning for CG

In the case of CG, similarly as A is required to be SPD, also
the preconditioner is required to be SPD.

In general, the problem of finding a good preconditioner is
very problem-specific.

Some black-box preconditioners:

- Jacobi: P = diag(A).

- Symmetric Gauss-Seidel: P = L∗diag(A)−1LT∗ where
L∗ =tril(A).

- Incomplete Cholesky: An approximated Cholesky
factorisation, where no fill-in is introduced:

P = LLT ≈ A, such that if Aij = 0 =⇒ Lij = 0

In other words, we impose that L has the same sparsity pattern
as A.

Sparse matrices and iterative solvers

Recall that:

The sparsity of an n × n matrix A is

nnz(A)

n2

where nnz(A) = # of nonzero entries in A. A matrix is
sparse if its sparsity is � 1.

Sparse matrices are extremely common in engineering and
computer science, e.g., Network theory, data analysis and
machine learning, discretization of differential equations.

direct solvers suffer from the fill-in phenomenon.

Sparse matrices and iterative solvers

Recall that at each iteration of an iterative we have to
compute a matrix-vector product

v −→ Av

If A is sparse, only the nonzero entries of A are involved in the
computation:

(Av)i =
n∑

j=1

aijvj =
n∑

j s.t. aij 6=0

aijvj

The cost of a matrix-vector product is then 2nnz(A), versus
2n2 for dense matrices.

Iterative solvers do not suffer from fill-in. In particular, the
main memory consumption is just the storing of A. Hence
iterative methods typically require much less memory than
direct methods.

Summary on Linear Systems

available solvers for Ax = b, with A ∈ Rn×n non singular...

Direct Methods

Methods Requirements on A Cost

GEM / LU 1det(Ai) 6= 0, i = 1, . . . , n ∼ 2/3 n3 FLOPs

GEM / LU + Pivoting none ∼ 2/3 n3 FLOPs

1Ai is the matrix obtained considering only the first i rows and the first i
columns of A. This condition is automatically satisfied if A is diagonally
dominant or if A is SPD.

Iterative Methods (∼ 2n2 FLOPs for each iteration)

Methods Requirements on A
Sufficient conditions

for convergence

Jacobi Aii 6= 0, i = 1, . . . , n A diagonally dominant

Gauss-Seidel Aii 6= 0, i = 1, . . . , n
A diagonally dominant

or A SPD

Steepest Descent
Method

A SPD always ensured

Conjugate Gradient
Method

A SPD
always ensured

in less than n iterations

