[terative methods

Consider the linear system
Ax=b

terative methods start from an initial guess x(®) and construct a
sequence of approximate solutions {x(K)} such that

x = lim g(k).
k—o00

Splitting methods
The matrix A is split as

Splitting methods go like
x(© given solve MxK) = b+ Nx(k=D = 1,2,--- (1)

With iterative methods we give up the idea of computing the exact
solution, but we want low operational costs. In particular:

@ the system (1) must be much easier to deal with than the
original system Ax = b, that is, the matrix M must be as
simple as possible, and of course non-singular;

@ the sequence {g(k)} must converge to x for any initial guess
(0)
X

@ the convergence must be fast.

Different choices for M give rise to different iterative methods.

Jacobi method

take M = diag(A) (and hence N = M — A), applicable if
aji # 0 Vi. At each iteration k we have to solve a diagonal system

an O 0 ka) by 0 a2 -+ ain Xl(kil)
0 a»n --- 0 xék) by a; 0 - a xz(k_l)
0 0 N N I :
0 ann X,Sk) b, anl a2 0 X,(jkfl)

Thus we obtain

i—1 n
j=1

j=it1

The number of operations for each component is ~ 2n, so that the
cost for one Jacobi iteration is ~ 2n.

Gauss-Seidel method

take M = tril(A), applicable if aj; # 0 Vi. At each iteration k we
have to solve a lower triangular system

a1l 0 e 0 ka) b1 0 aio s+ dlp 1(k71)
ay axp --- 0 xék) b, 0 0 - ao Xz(k‘l)
am ann Xr(;k) b, O 0 --- 0 X,(1k.—1)

Thus we obtain

i—1 n
A= (b= o = 3 ap) fan 1= 1
j=1

Jj=i+1

The difference with respect to Jacobi method is in the first sum of

the formula, where the updated xj(k) are used instead of the old
xj(kfl). The number of operations is exactly the same: for each

component is ~ 2n, so that the cost for one Gauss-Seidel iteration
is ~ 2n?.

Convergence analysis for splitting methods

In all cases we want convergence for any initial guess x(®). With
paper and pencil we study the error at each iteration.

Let e(k) = x — x(K) be the error at the k" iteration.

Since x and g(k) are solutions of

Mx=b+Nx, Mx® = b+ NxkD),
by subtracting we get

M(x — xRy = N(x — x*k) — el = m=1N k1)
X=X X=X
B

where B = M~1N is the iteration matrix.
eV = Belk=1) f=12..., = ek =pBkel),

If we want lim e) =0 we need lim B¥ = 0.
k—o0 k—o0

Convergent matrices

A matrix B € R™" is convergent if

lim BX =0,

k— 00

where 0 is the matrix identically zero. Then:

Lemma 1
Let B € R™". We have

lim BK =0 < max|\(B)| < 1.

k—o00

The proof is not trivial for a generic B.

A useful property of natural norm of matrices

Lemma 2
Let |||A||| be any natural norm of matrix. Then

max| ()] < [[|All| VA€ R™".

Proof.

Let A be an eigenvalue of A, and let v # 0 an eigenvector
associated to A, that is Av = Av. From the properties of the
norms we immediately have

ANl = Tavll = lTAvI < [HATHvA,

then [A[[lv]] < [[|A[[lllv]], and then [A| < || A[}] m

The quantity max; |A\j(A)] is called the spectral radius of A, and
denoted as p(A).

the matrix || - ||« norm

Q\‘Vm E@[@/nMJ 1Bl o s [Boll~ _ o
e |l o { _
\){oc’f "’% R bodt™ a7u4‘vm/QM<o_:
UBv’Uw - M"f’\)‘ (8{\)5(\(l /é gu J/

= twax = |Byllogl < //wngfx =

Houdor el

= mer = By
H‘U'(fan T J
lfvle |
o B e e 5 (Rl

the matrix ||| - |||oo norm

ow s ok liond) Gt Rae udix puale et
e &eQMqu& Wi~ egn EBeq Suee MW, -1 i

We (/\Q\IQ

= Wox =3 ‘B(‘J\
t J

Wl"*)zlng\\i B(ﬂ = X ngWJ = /\[S gﬁ‘j W, {
< wax] By w, [= [/ Bw -
el Mw
T < e e = Bl -

Ve

Classes of matrices for which we have convergence results

Lemma 3
If A is diagonally dominant, i.e.,

n
ai| > > lay| Vi=1,2,--.,n
j=1

J#i

both Jacobi and Gauss-Seidel converge.

Proof.

We shall prove the Lemma for Jacobi method. The iteration
matrix Bj is given by

T o 12 _9in]
a11 311
B L
B, = an an
_anl _ an2 0
- ann ann =

Since A is diagonally dominant, |||B,]||ec = maxZ] U| <1, and
all
JF#i
we deduce (from Lemma 1) that max; |\;(B,)| < 1. O
Lemma 4

If A is symmetric and positive definite Gauss-Seidel converges.
Jacobi might or might not converge.

Stopping criteria

As usual with iterative procedures, we need sound stopping criteria
to decide when to stop. Given a tolerance 7 for example ~ 1073,
or 1074)

e test on the iterates: at each iteration check if

Hé(k) _ K(kfl)” _
EEI

for some norm of vectors;
e test on the residual: when the test on the iterates is satisfied,
check if

||£(k)|| (k) (k) .
B <rT (r'" := b — Ax\/ is the residual)

When both are satisfied, stop and take g(k) as solution.

Pseudocode for splitting methods

M is usually referred as a preconditioner.

Splitting ietartive method
Input: A€ R"™" and b € R"
Choose M € R™", x(0) ¢ R" and set r(® = p — Ax(®)
for k =1,2,..., until convergence:
Solve Mp(k=1) = p(k-1)
x(K) = kafl) + plk=1)
) = p— Ax(k)
end

Error analysis

Unfortunately, the fact that the residual is small does not
guarantee that the error x — K(k) is small.

Taking the norm in both sides we have

e = W = A7 < (a9
Ly W = 1)
< [IIA7HI] [[A[] < [[JAZ=[AT :
1]l 1]l
Then we obtain
Ilx = x| 1 18]
< [IAZIHHAT :
Cxl |1&]
If the number x(A) := [||[A~]|||||A]|| is big there is no control on

the error, no matter how small the residual is. k(A) is called
“condition number of A", and if K(A) >> 1 the matrix is said to
be ill-conditioned.

Concept of conditioning

When dealing with ill-conditioned matrices, any numerical method
(direct or iterative) might produce unsatisfactory results.

Roughly speaking, a problem is well-conditioned if “small”
perturbations on the data determine “small” perturbations on the
results.

To clarify the concept of conditioning of a problem, let us consider
a generic problem: find u solution of

(P) F(u,d) =0,

where d are the data, and F is the law relating u to d.

Concept of conditioning

More precisely, let u be the solution of the problem
(P) F(u,d)=0

corresponding to data d, and let dd be a perturbation on the
data. Denote by du the corresponding perturbation on the solution
u. Then, instead of solving (P) we are solving

(P) F(u+6u,d+dd) =0.

Assuming (P) is well-posed (that is, there exists a unique the
solution for any given datum), we define its (relative) condition
number as the smallest constant x > 0 that satisfies

[6ull __lld]l

<k
[|ul]l

Example: conditioning of the linear system Ax = b

Consider a simple case: assume that the possible errors are only on
the right-hand side (and not on the matrix). Let b be the error
on b, and let X = x + dx be the solution for the right-hand side
b= b+ 0b, that is:

Ax=b and A(x+dx)=Db+6b,

subtracting we get Adx = db and therefore 6x = A~15b.
Proceeding as we did before we have

[0b]
x| = |A o]l < [[|AY[I168] = [IIA~ Y1 o] 1]
ob|| 05|
A~ 1 H Ax A~ 1 A
= AT 5o b] [Ax] < [IA 15— Bl [[A[[1]]x]]

We found

19|
X

A simple example to understand how a big condition number
might affect the results.

10° 10712\ /x\ _ [10°

0 107°)\x/) \107°
Exact solution xo = 1, x1 =~ 1; koo (A) =~ 10*2. Now perturb only
the first component of the right-hand side by 107°, and then only

the second component by 1076, In both cases
16b]|so/|1bllcc < 10712, What happens to the solution?

|0b]| [RE]]

|
< [[ATHIIAIN T Bl H(A)W

An approach for symmetric positive definite matrices

We now assume that the system matrix is symmetric and positive
definite (SPD), and discuss a different iterative approach.

Recall the problem we want to solve: given b € R”, and

A€ R" x R", we look for x* € R" solution of

Ax* = b 2)

Since A is SPD, we can define a scalar product associated with
A: (Ax,y) = yTAx. If Ais also positive definite, then

(Ax,x) >0 Vx#0.
Then we can introduce the functional F : R" — R defined as:

F(v) = %(Az, v)—(byv) VveR" (3)

Theorem 5
If A€ R" x R" is SPD, problem (2) has a unique solution, and is

equivalent to the following minimum problem for the functional
defined in (3):

find u € R" such that)
F(u) < F(v) Vv € R”

(that is, (4) has a unique solution u € R", and u = x*).

Proof.

Since A is positive definite, problem (2) has a unique solution

(det(A) # 0). Now, F is a quadratic functional (hence,

differentiable), and

FOF T
v
OF

VF(v)=|0v,| =Av—b H(F)=A (H(F) = Hessian matrix)

OF
L OVn J

Since A is positive definite, the matrix H(F) has positive
eigenvalues (and real because A is symmetric). Hence, F is strictly
convex, that is, it has a unique minimum. Let u € R" be the point
of minimum. As such, it verifies

VF(u)=0 — Au—b=0.

Descent Methods

Given the equivalence between the linear system (2) and the
minimum problem (4), we look for x* as minimum point for F(x).

Starting from an initial guess x(°) (any), we want to construct a
sequence x(¥) converging to x* in the following way:

g(o)given. Then, for k=1,2,--- set g(kﬂ) = g(k) + akB(k)

° B(k) are directions of descent,
e «, are numbers that tell us how much to descent along p(k).
They have to be chosen to guarantee descent, that is, to guarantee
that

F(x*)y < F(x®)y k.

Descent methods

The optimal value of a can be computed by imposing

9 F (b 4 apy =0
Oa

which guarantees maximum descent along F. Indeed,
(A(x + aplk)) (k) 4 ap(k)) _ <b, (k) 4 ap(k))

(409, p9)) +a (Ax9) — b, p9) + (%Axw b X(k))

N =

F(x®¥) 4 apty =

N‘QN

With respect to the variable «, this function is an U-shaped parabola (it has a unique
minimum).

;F(x + apy = (Ap(k),p(k)> + (Ax(k) — b, p(k)> =0

(b — Aé(k)7B(k)) _ (f(k)ve(k))
(AB(k)’B(k)) - (AB(k)’B(k))

ay = optimal a =

Gradient method: the “steepest descent”

o the gradient VF(x(¥)) gives the direction and rate of fastest
increase at a point x(%). Since we want to minimize, it make
sense to go in the direction of fastest decrease, that is,
steepest descent

B(k) — —ZF(K(k)) —bh— Aé(k) — L(k)

@ The steepest descent method converges for all initial guess
5(0). Moreover it holds:

o k
==l < () =l

where [|v|, = VvTAv is the A—norm. The formula above
says that convergence is guaranteed, but can be very slow if A
is ill-conditioned (indeed ry (A) very large means that

(2%231}) is very close to 1).

Pseudocode for Steepest Descent Method

Steepest Descent Method
Input: A€ R™" SPD, beR", x(O ¢ R", tol € RT, maxiter € N
r©® = p— Ax(®)
for k=1,2,..., maxiter:

y = Arlk=1)

g = (kD) (k1)) (y, (k1))

xK) = x(k=1) 4 o r(k=1)

10 = p— Ax9) = (kD) oy

If Stopping criteria are satisfied exit the loop
end
Output: x(*)

Like for all iterative methods, the dominant computational cost at
each iteration is given by the matrix-vector product with A, that
costs about 2n% FLOPs (n? multiplications and ~ n? sums).

Summary and extensions of gradient methods...

We have our functional F(v) := 3(Av,v) — (b, v) to minimize and
use x(kT1) = x(k) 4 o, p(K) where p(k) = —EF(K(k)) = b— Ax(K).
Possible alternatives are:

e to simplify the calculation of p(¥) = —VF(x(K), e.g. in the
stochastic gradient descent method, used in machine
learning: we save time per each iteration at the expenses of
an increased number of iterations to reach a given accuracy;

e to find better descent directions p(¥), such that the
convergence at a given tolerance requires less iterations, as in
the conjugate gradient method

Summary and extensions of gradient methods...

We have our functional F(v) := 3(Av,v) — (b, v) to minimize and
use x(kT1) = x(k) 4 o, p(K) where p(k) = —EF(K(k)) = b— Ax(K).
Possible alternatives are:

e to simplify the calculation of p(¥) = —VF(x(K), e.g. in the
stochastic gradient descent method, used in machine
learning: we save time per each iteration at the expenses of
an increased number of iterations to reach a given accuracy;

e to find better descent directions p(¥), such that the
convergence at a given tolerance requires less iterations, as in
the conjugate gradient method

Steepest descents vs. Conjugate Gradient

2.0
b
{Xg:¥0)
= 0.0
-2.0
-5.0 0.0 5.0

X
Steepest Decents Method
— Conjugate Gradients Method

Conjugate Gradient method

with p(® = —VF(x(©), at each iteration k take p(¥) in the plane
Span{L(k)vg(k_l)}

(k=1)

where [is chosen so that B(k) is A—orthogonal to p , e

(B(k))TAB(k_l) = 0 (orthogonal in the scalar product associated
with A). It can be proven that

(B(k))TABU)zo, =1, k—1.

This approach is faster than the steepest descent. Actually, the
method converges in less than n iterations (n=dimension of the
system), so it can be considered a direct method.

Matlab function: x =pcg(A, b, ...)

Pseudocode for Conjugate Gradient Method

Conjugate Gradient Method
Input: A€ R™" SPD, b e R", x(O ¢ R”, tol € RT, maxiter € N
r0 = p— Ax(0)
p® = ((0)
for k =1,2,..., maxiter:
y = Aplkt)
anr = (p1, (1) / (y, pkD)
x(K) = x (k=1 4y plk=D)
1) = b — Ax) = (kD) gy
B1 = (v, r) / (v, p7Y)
B(k) = rlk) — 5,{713(’&1)
If Stopping criteria are satisfied exit the loop
end
Output: x(K)

Convergence of the Conjugate Gradient Method
We have the following bound on the relative error for CG:

k
e <2 (J%;) [y

recalling that, when A is SPD, it holds

2 ()= A A = Se=t)

n (A)

Then the larger k3 (A) is, the slower the method converges,
however, it should be noted that if we compare:

@ the reducing factor of k Steepest Descend iterations:

(22:3) " and

@ the reducing factor of k Conjugate Gradient iter.:

) k2(A)—1 k
HQ(A)—f—l

we see that Conjugate Gradient is more favourable.

Preconditioners

To speedup the convergence, we can use a preconditioner. In this case, the
original linear system Ax = b with the equivalent one

P'Ax=P7'b
where P is a nonsingular matrix called preconditioner.

A good preconditioner has two features:

@ An iterative method applied to the new system should converge in less
iterations than for the original system. This typically means that the
eigenvalues of P~'A should be clustered (in the case of CG, this means
Amax(P7EA) & Amin(P71 A)).

@ At each iteration of an iterative method we need to compute a
matrix-vector product with the system matrix. In the preconditioned case,
this is done in two steps

v— Av — P71 (Av)

Thus, computing matrix-vector products with P! (or equivalently
solving a linear system with P) should be fast. Note that we never need
to compute the matrix P~1A explicitly.

Preconditioners

@ Hence a good preconditioner P should be as similar as
possible to A, while being easy to invert:

@ Let us consider two extreme cases: P=1,and P=A

- If P=A, P1A =, and any iterative method would converge
in just 1 iteration (note that Amax(P71A) = Amin(P71A) = 1).
On the other hand, applying P71 is as difficult as solving the
original system.

- If P =1,, then applying P~! has no cost. On the other hand
P~1A = A, so there is no reduction in the number od
iterations.

@ A good preconditioner should find a balance between these
two extremes.

Preconditioning for CG

@ In the case of CG, similarly as A is required to be SPD, also
the preconditioner is required to be SPD.

@ In general, the problem of finding a good preconditioner is
very problem-specific.

@ Some black-box preconditioners:
- Jacobi: P = diag(A).

- Symmetric Gauss-Seidel: P = L.diag(A)~!L] where
L, =tril(A).

- Incomplete Cholesky: An approximated Cholesky
factorisation, where no fill-in is introduced:

P=LL"T ~A, suchthatifAj=0=L;=0

In other words, we impose that L has the same sparsity pattern
as A.

Sparse matrices and iterative solvers

Recall that:

@ The sparsity of an n x n matrix A is

nnz(A)
2

where nnz(A) = # of nonzero entries in A. A matrix is
sparse if its sparsity is < 1.

@ Sparse matrices are extremely common in engineering and
computer science, e.g., Network theory, data analysis and
machine learning, discretization of differential equations.

o direct solvers suffer from the fill-in phenomenon.

Sparse matrices and iterative solvers
@ Recall that at each iteration of an iterative we have to
compute a matrix-vector product
v — Av
If A is sparse, only the nonzero entries of A are involved in the
computation:

n

n
(Av); = ajvi= > ayy
j=1

Jjs.t. ajj£0

The cost of a matrix-vector product is then 2nnz(A), versus
2n? for dense matrices.

@ lterative solvers do not suffer from fill-in. In particular, the
main memory consumption is just the storing of A. Hence
iterative methods typically require much less memory than
direct methods.

Summary on Linear Systems

available solvers for Ax = b, with A € R™*" non singular...

Direct Methods

Methods Requirements on A Cost
GEM / LU ldet(A;)) #0,i=1,...,n ~2/3 n3FLOPs
GEM / LU + Pivoting none ~2/3 n% FLOPs

L A; is the matrix obtained considering only the first i rows and the first
columns of A. This condition is automatically satisfied if A is diagonally
dominant or if A is SPD.

lterative Methods (~ 2n? FLOPs for each iteration)

Sufficient conditions

Methods Requirements on A
for convergence
Jacobi Ai#0,i=1,...,n A diagonally dominant
. . A diagonally dominant
Gauss-Seidel Ai#0,i=1....n or ASPD
Steepest Descent A SPD always ensured

Method

Conjugate Gradient always ensured
A SPD . . .
Method in less than n iterations

