Iterative methods

Consider the linear system

$$
A \underline{x}=\underline{b}
$$

Iterative methods start from an initial guess $\underline{x}^{(0)}$ and construct a sequence of approximate solutions $\left\{\underline{x}^{(k)}\right\}$ such that

$$
\underline{x}=\lim _{k \rightarrow \infty} \underline{x}^{(k)} .
$$

Splitting methods

The matrix A is split as

$$
A=M-N
$$

Splitting methods go like

$$
\begin{equation*}
\underline{x}^{(0)} \text { given solve } \quad M \underline{x}^{(k)}=\underline{b}+N \underline{x}^{(k-1)} \quad k=1,2, \cdots \tag{1}
\end{equation*}
$$

With iterative methods we give up the idea of computing the exact solution, but we want low operational costs. In particular:

- the system (1) must be much easier to deal with than the original system $A x=b$, that is, the matrix M must be as simple as possible, and of course non-singular;
- the sequence $\left\{\underline{x}^{(k)}\right\}$ must converge to \underline{x} for any initial guess $\underline{x}^{(0)}$;
- the convergence must be fast.

Different choices for M give rise to different iterative methods.

Jacobi method

take $M=\operatorname{diag}(A)$ (and hence $N=M-A$), applicable if $a_{i i} \neq 0 \forall i$. At each iteration k we have to solve a diagonal system

$$
\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
0 & \cdots & \ddots & 0 \\
0 & \cdots & & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1}^{(k)} \\
x_{2}^{(k)} \\
\vdots \\
x_{n}^{(k)}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)-\left(\begin{array}{cccc}
0 & a_{12} & \cdots & a_{1 n} \\
a_{21} & 0 & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & 0
\end{array}\right)\left(\begin{array}{c}
x_{1}^{(k-1)} \\
x_{2}^{(k-1)} \\
\vdots \\
x_{n}^{(k-1)}
\end{array}\right)
$$

Thus we obtain

$$
x_{i}^{(k)}=\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k-1)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right) / a_{i i} \quad i=1, \cdots, n
$$

The number of operations for each component is $\sim 2 n$, so that the cost for one Jacobi iteration is $\sim 2 n^{2}$.

Gauss-Seidel method

take $M=\operatorname{tril}(A)$, applicable if $a_{i i} \neq 0 \forall i$. At each iteration k we have to solve a lower triangular system

$$
\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & \cdots & & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1}^{(k)} \\
x_{2}^{(k)} \\
\vdots \\
x_{n}^{(k)}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)-\left(\begin{array}{cccc}
0 & a_{12} & \cdots & a_{1 n} \\
0 & 0 & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right)\left(\begin{array}{c}
x_{1}^{(k-1)} \\
x_{2}^{(k-1)} \\
\vdots \\
x_{n}^{(k-1)}
\end{array}\right)
$$

Thus we obtain

$$
x_{i}^{(k)}=\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right) / a_{i i} \quad i=1, \cdots, n
$$

The difference with respect to Jacobi method is in the first sum of the formula, where the updated $x_{j}^{(k)}$ are used instead of the old $x_{j}^{(k-1)}$. The number of operations is exactly the same: for each component is $\sim 2 n$, so that the cost for one Gauss-Seidel iteration is $\sim 2 n^{2}$.

Convergence analysis for splitting methods

In all cases we want convergence for any initial guess $\underline{x}^{(0)}$. With paper and pencil we study the error at each iteration. Let $e^{(k)}=\underline{x}-\underline{x}^{(k)}$ be the error at the $k^{\text {th }}$ iteration. Since \underline{x} and $\underline{x}^{(k)}$ are solutions of

$$
M \underline{x}=\underline{b}+N \underline{x}, \quad M \underline{x}^{(k)}=\underline{b}+N \underline{N}^{(k-1)},
$$

by subtracting we get

$$
M\left(\underline{x}-\underline{x}^{(k)}\right)=N\left(\underline{x}-\underline{x}^{(k-1)}\right) \Longrightarrow e^{(k)}=\underbrace{M^{-1} N}_{B} e^{(k-1)}
$$

where $B=M^{-1} N$ is the iteration matrix.

$$
e^{(k)}=B e^{(k-1)} \quad k=1,2, \cdots, \Longrightarrow e^{(k)}=B^{k} e^{(0)}
$$

If we want $\lim _{k \rightarrow \infty} e^{(k)}=0$ we need $\lim _{k \rightarrow \infty} B^{k}=0$.

Convergent matrices

A matrix $B \in \mathbb{R}^{n \times n}$ is convergent if

$$
\lim _{k \rightarrow \infty} B^{k}=0
$$

where 0 is the matrix identically zero. Then:
Lemma 1
Let $B \in \mathbb{R}^{n \times n}$. We have

$$
\lim _{k \rightarrow \infty} B^{k}=0 \Longleftrightarrow \max _{i}\left|\lambda_{i}(B)\right|<1
$$

The proof is not trivial for a generic B.

A useful property of natural norm of matrices

Lemma 2

Let |||A||| be any natural norm of matrix. Then

$$
\max _{i}\left|\lambda_{i}(A)\right| \leq\|\mid\| A\| \| \quad \forall A \in \mathbb{R}^{n \times n}
$$

Proof.

Let λ be an eigenvalue of A, and let $\underline{v} \neq 0$ an eigenvector associated to λ, that is $A \underline{v}=\lambda \underline{v}$. From the properties of the norms we immediately have

$$
|\lambda|\|\underline{v}\|=\|\lambda \underline{v}\|=\|A \underline{v}\| \leq\|A \mid\|\|\underline{v}\|
$$

then $|\lambda|\|\underline{v}\| \leq|||A|||\|\underline{v}\|$, and then $|\lambda| \leq\|||A| \|$.
The quantity $\max _{i}\left|\lambda_{i}(A)\right|$ is called the spectral radius of A, and denoted as $\rho(A)$.
the matrix $\mid\|\cdot\| \|_{\infty}$ norm

Given $B \in \mathbb{R}^{n \times n},\|B\|_{\infty}:=\sup _{v \in \mathbb{R}^{n}} \frac{\|B v\|_{\infty}}{\|v\|_{\infty}}=\max _{i} \sum_{J=1}^{n}\left|B_{i j}\right|$.
proof of the last equivaluse:

$$
\begin{aligned}
\|B v\|_{\infty} & =\max _{i}\left|(B v)_{i}\right|=\max _{i}\left|\sum_{j=1}^{n} B_{i j} v_{j}\right| \\
& \leq \max _{i} \sum_{j}\left|B_{j}\right|\left\|v_{j}\left|\leq\|v\|_{\infty} \max _{i} \sum_{j}\right| B_{i j} \mid\right.
\end{aligned}
$$

therefore $\quad \frac{\|B u\|_{\infty}}{\|v\|_{\infty}} \leq \max _{i} \sum_{j}\left|B_{i j}\right|$
and $\operatorname{sexp}_{v \in \mathbb{R}^{n}} \frac{\|B v\|_{\infty}}{\|v\|_{\infty}} \leq \max _{i} \sum_{j}\left|B_{i j}\right|$
the matrix $\|\|\cdot\|\|_{\infty}$ norm
on the other hand, let it the index such that

$$
\sum_{j}\left|B_{i * j}\right|=\max _{i} \sum_{j}\left|B_{i j}\right|
$$

then, selecting $\quad W_{j}=$ sign Bins, since $\|W\|_{\infty}=1$, we have

$$
\begin{aligned}
& \max _{i} \sum_{j}\left|B_{i j}\right|-\sum_{j}\left|B_{i+j}\right|= \sum_{j} B_{i+j} W_{j}=\left|\sum_{j} B_{i+j} W_{j}\right| \\
& \leq \max _{i}\left|\sum_{j} B_{i j} w_{j}\right|=\|B w\|_{\infty} \\
&=\frac{\|B w\|_{\infty}}{\|w\|_{\infty}} \leqslant \sup _{v \in \mathbb{R}^{n}} \frac{\|B v\|_{\infty}}{\|v\|_{\infty}}=\|B\| \|_{\infty}
\end{aligned}
$$

Classes of matrices for which we have convergence results

Lemma 3
If A is diagonally dominant, i.e.,

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| \quad \forall i=1,2, \cdots, n
$$

both Jacobi and Gauss-Seidel converge.

Proof.

We shall prove the Lemma for Jacobi method. The iteration matrix B_{J} is given by

$$
B_{J}=\left[\begin{array}{cccc}
0 & -\frac{a_{12}}{a_{11}} & \cdots & -\frac{a_{1 n}}{a_{11}} \\
-\frac{a_{21}}{a_{22}} & 0 & \cdots & -\frac{a_{2 n}}{a_{22}} \\
\vdots & \vdots & \ddots & \vdots \\
-\frac{a_{n 1}}{a_{n n}} & -\frac{a_{n 2}}{a_{n n}} & \cdots & 0
\end{array}\right]
$$

Since A is diagonally dominant, $\left|\left|\left|B_{J}\right| \|_{\infty}=\max _{i} \sum_{j \neq i}\right| \frac{a_{i j}}{a_{i i}}\right|<1$, and
we deduce (from Lemma 1) that $\max _{i}\left|\lambda_{i}\left(B_{J}\right)\right|<1$.
Lemma 4
If A is symmetric and positive definite Gauss-Seidel converges.
Jacobi might or might not converge.

Stopping criteria

As usual with iterative procedures, we need sound stopping criteria to decide when to stop. Given a tolerance τ for example $\sim 10^{-3}$, or 10^{-4})

- test on the iterates: at each iteration check if

$$
\frac{\left\|\underline{x}^{(k)}-\underline{x}^{(k-1)}\right\|}{\left\|\underline{x}^{(k-1)}\right\|} \leq \tau
$$

for some norm of vectors;

- test on the residual: when the test on the iterates is satisfied, check if

$$
\frac{\left\|\underline{r}^{(k)}\right\|}{\|\underline{b}\|} \leq \tau \quad\left(\underline{r}^{(k)}:=\underline{b}-A \underline{x}^{(k)}\right. \text { is the residual) }
$$

When both are satisfied, stop and take $\underline{x}^{(k)}$ as solution.

Pseudocode for splitting methods

$$
\begin{aligned}
M \underline{x}^{(k)} & =\underline{b}+N \underline{x}^{(k-1)}=\underline{b}+(M-A) \underline{x}^{(k-1)} \\
& =\underline{b}-A \underline{x}^{(k-1)}+M x^{(k-1)} \\
& \Longrightarrow \underline{x}^{(k)}=\underline{x}^{(k-1)}+M^{-1} \underline{\underline{r}}^{(k-1)}
\end{aligned}
$$

M is usually referred as a preconditioner.
Splitting ietartive method
Input: $A \in \mathbb{R}^{n \times n}$ and $\underline{b} \in \mathbb{R}^{n}$
Choose $M \in \mathbb{R}^{n \times n}, \underline{x}^{(0)} \in \mathbb{R}^{n}$ and set $\underline{r}^{(0)}=b-A \underline{x}^{(0)}$ for $k=1,2, \ldots$, until convergence:

Solve $M p^{(k-1)}=\underline{r}^{(k-1)}$
$\underline{x}^{(k)}=\underline{x}^{(k-1)}+\underline{p}^{(k-1)}$
$\underline{r}^{(k)}=\underline{b}-A \underline{x}^{(k)}$
end

Error analysis

Unfortunately, the fact that the residual is small does not guarantee that the error $\underline{x}-\underline{x}^{(k)}$ is small.

$$
\underline{r}^{(k)}:=\underline{b}-A \underline{x}^{(k)}=A \underline{x}-A \underline{x}^{(k)} \longrightarrow \underline{x}-\underline{x}^{(k)}=A^{-1} \underline{r}^{(k)} .
$$

Taking the norm in both sides we have

$$
\begin{aligned}
\left\|\underline{x}-\underline{x}^{(k)}\right\| & =\left\|A^{-1} \underline{r}^{(k)}\right\| \leq\left\|\mid A^{-1}\right\|\| \| \underline{r}^{(k)} \| \\
& \leq\left\|A^{-1} \mid\right\| \frac{\left\|\underline{r}^{(k)}\right\|}{\|\underline{b}\|}\|A \underline{x}\| \leq\left\|A^{-1}\right\|\| \| A\| \|\|\underline{x}\| \frac{\left\|\underline{r}^{(k)}\right\|}{\|\underline{b}\|} .
\end{aligned}
$$

Then we obtain

$$
\frac{\left\|\underline{x}-\underline{x}^{(k)}\right\|}{\|\underline{x}\|} \leq\left\|\mid A^{-1}\right\|\| \|\|A\| \frac{\left\|\underline{r}^{(k)}\right\|}{\|\underline{b}\|} .
$$

If the number $\kappa(A):=\|\left|\left|A^{-1}\right|\right|| || | A| | \mid$ is big there is no control on the error, no matter how small the residual is. $\kappa(A)$ is called "condition number of A^{\prime} ", and if $\kappa(A) \gg 1$ the matrix is said to be ill-conditioned.

Concept of conditioning

When dealing with ill-conditioned matrices, any numerical method (direct or iterative) might produce unsatisfactory results.

Roughly speaking, a problem is well-conditioned if "small" perturbations on the data determine "small" perturbations on the results.

To clarify the concept of conditioning of a problem, let us consider a generic problem: find u solution of

$$
(P) \quad F(u, d)=0
$$

where d are the data, and F is the law relating u to d.

Concept of conditioning

More precisely, let u be the solution of the problem

$$
(P) \quad F(u, d)=0
$$

corresponding to data d, and let δd be a perturbation on the data. Denote by δu the corresponding perturbation on the solution u. Then, instead of solving (P) we are solving

$$
(\widetilde{P}) \quad F(u+\delta u, d+\delta d)=0
$$

Assuming (P) is well-posed (that is, there exists a unique the solution for any given datum), we define its (relative) condition number as the smallest constant $\kappa>0$ that satisfies

$$
\frac{\|\delta u\|}{\|u\|} \leq \kappa \frac{\|\delta d\|}{\|d\|}
$$

Example: conditioning of the linear system $A \underline{x}=\underline{b}$

Consider a simple case: assume that the possible errors are only on the right-hand side (and not on the matrix). Let $\delta \underline{b}$ be the error on \underline{b}, and let $\underline{\widetilde{x}}=\underline{x}+\delta \underline{x}$ be the solution for the right-hand side $\underline{\widetilde{b}}=\underline{b}+\delta \underline{b}$, that is:

$$
A \underline{x}=\underline{b} \quad \text { and } \quad A(\underline{x}+\delta \underline{x})=\underline{b}+\delta \underline{b},
$$

subtracting we get $A \delta \underline{x}=\delta \underline{b}$ and therefore $\delta \underline{x}=A^{-1} \delta \underline{b}$.
Proceeding as we did before we have

$$
\begin{aligned}
\|\delta \underline{x}\| & =\left\|A^{-1} \delta \underline{b}\right\| \leq\left\|A^{-1} \mid\right\|\|\delta \underline{b}\|=\left\|A^{-1}\right\|\left\|\frac{\|\delta \underline{b}\|}{\|\underline{b}\|}\right\| \underline{b} \| \\
& =\left\|A ^ { - 1 } \left|\| \frac { \| \delta \underline { b } \| } { \| \underline { b } \| } \| A \underline { x } \left\|\leq\left|\left\|A^{-1}\right\|\left\|\frac{\|\delta \underline{b}\|}{\|\underline{b}\|}\right\|\|A \mid\|\| \| \underline{x} \|\right.\right.\right.\right.
\end{aligned}
$$

We found

$$
\frac{\|\delta \underline{x}\|}{\|\underline{x}\|} \leq\left\|\left|A^{-1}\right|\right\|\left|\|A \mid\| \frac{\|\delta \underline{b}\|}{\|\underline{b}\|}=\kappa(A) \frac{\|\delta \underline{b}\|}{\|\underline{b}\|}\right.
$$

A simple example to understand how a big condition number might affect the results.

$$
\left(\begin{array}{cc}
10^{6} & 10^{-12} \\
0 & 10^{-6}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{10^{6}}{10^{-6}}
$$

Exact solution $x_{2}=1, x_{1} \simeq 1 ; \kappa_{\infty}(A) \simeq 10^{12}$. Now perturb only the first component of the right-hand side by 10^{-6}, and then only the second component by 10^{-6}. In both cases $\|\delta \underline{b}\|_{\infty} /\|\underline{b}\|_{\infty} \leq 10^{-12}$. What happens to the solution?

An approach for symmetric positive definite matrices

We now assume that the system matrix is symmetric and positive definite (SPD), and discuss a different iterative approach. Recall the problem we want to solve: given $\underline{b} \in \mathbb{R}^{n}$, and $A \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, we look for $\underline{x}^{*} \in \mathbb{R}^{n}$ solution of

$$
\begin{equation*}
A \underline{x}^{*}=\underline{b} \tag{2}
\end{equation*}
$$

Since A is SPD, we can define a scalar product associated with $A:(A \underline{x}, \underline{y})=\underline{y}^{\top} A \underline{x}$. If A is also positive definite, then

$$
(A \underline{x}, \underline{x})>0 \quad \forall \underline{x} \not \equiv \underline{0}
$$

Then we can introduce the functional $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined as:

$$
\begin{equation*}
F(\underline{v}):=\frac{1}{2}(A \underline{v}, \underline{v})-(\underline{b}, \underline{v}) \quad \forall \underline{v} \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

Theorem 5
If $A \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ is $S P D$, problem (2) has a unique solution, and is equivalent to the following minimum problem for the functional defined in (3):

$$
\left\{\begin{array}{l}
\text { find } \underline{u} \in \mathbb{R}^{n} \text { such that } \tag{4}\\
F(\underline{u}) \leq F(\underline{v}) \quad \forall \underline{v} \in \mathbb{R}^{n}
\end{array}\right.
$$

(that is, (4) has a unique solution $\underline{u} \in \mathbb{R}^{n}$, and $\underline{u} \equiv \underline{x}^{*}$).

Proof.

Since A is positive definite, problem (2) has a unique solution $(\operatorname{det}(A) \neq 0)$. Now, F is a quadratic functional (hence, differentiable), and
$\underline{\nabla} F(\underline{v})=\left[\begin{array}{c}\frac{\partial F}{\partial v_{1}} \\ \frac{\partial F}{\partial v_{2}} \\ \vdots \\ \frac{\partial F}{\partial v_{n}}\end{array}\right]=A \underline{v}-\underline{b} \quad H(F)=A \quad(H(F)=$ Hessian matrix $)$
Since A is positive definite, the matrix $H(F)$ has positive eigenvalues (and real because A is symmetric). Hence, F is strictly convex, that is, it has a unique minimum. Let $\underline{u} \in \mathbb{R}^{n}$ be the point of minimum. As such, it verifies

$$
\underline{\nabla} F(\underline{u})=\underline{0} \quad \longrightarrow \quad A \underline{u}-\underline{b}=\underline{0} .
$$

Descent Methods

Given the equivalence between the linear system (2) and the minimum problem (4), we look for \underline{x}^{*} as minimum point for $F(\underline{x})$. Starting from an initial guess $\underline{x}^{(0)}$ (any), we want to construct a sequence $\underline{x}^{(k)}$ converging to \underline{x}^{*} in the following way:
$\underline{x}^{(0)}$ given. Then, for $k=1,2, \cdots$ set $\quad \underline{x}^{(k+1)}=\underline{x}^{(k)}+\alpha_{k} \underline{p}^{(k)}$

- $\underline{p}^{(k)}$ are directions of descent,
- $\bar{\alpha}_{k}$ are numbers that tell us how much to descent along $\underline{p}^{(k)}$. They have to be chosen to guarantee descent, that is, to guarantee that

$$
F\left(\underline{x}^{(k+1)}\right)<F\left(\underline{x}^{(k)}\right) \quad \forall k .
$$

Descent methods

The optimal value of α_{k} can be computed by imposing

$$
\frac{\partial}{\partial \alpha} F\left(x^{(k)}+\alpha p^{(k)}\right)=0
$$

which guarantees maximum descent along F. Indeed,

$$
\begin{aligned}
F\left(x^{(k)}+\alpha p^{(k)}\right) & =\frac{1}{2}\left(A\left(x^{(k)}+\alpha p^{(k)}\right), x^{(k)}+\alpha p^{(k)}\right)-\left(b, x^{(k)}+\alpha p^{(k)}\right) \\
& =\frac{\alpha^{2}}{2}\left(A p^{(k)}, p^{(k)}\right)+\alpha\left(A x^{(k)}-b, p^{(k)}\right)+\left(\frac{1}{2} A x^{(k)}-b, x^{(k)}\right)
\end{aligned}
$$

With respect to the variable α, this function is an U -shaped parabola (it has a unique minimum).

$$
\begin{gathered}
\frac{\partial}{\partial \alpha} F\left(x^{(k)}+\alpha p^{(k)}\right)=\alpha\left(A p^{(k)}, p^{(k)}\right)+\left(A x^{(k)}-b, p^{(k)}\right)=0 \\
\alpha_{k}=\text { optimal } \alpha=\frac{\left(\underline{b}-A \underline{x}^{(k)}, \underline{p}^{(k)}\right)}{\left(A \underline{p}^{(k)}, \underline{p}^{(k)}\right)}=\frac{\left(\underline{r}^{(k)}, \underline{p}^{(k)}\right)}{\left(A \underline{p}^{(k)}, \underline{p}^{(k)}\right)}
\end{gathered}
$$

Gradient method: the "steepest descent"

- the gradient $\nabla F\left(\underline{x}^{(k)}\right)$ gives the direction and rate of fastest increase at a point $\underline{x}^{(k)}$. Since we want to minimize, it make sense to go in the direction of fastest decrease, that is, steepest descent

$$
\underline{p}^{(k)}=-\underline{\nabla} F\left(\underline{x}^{(k)}\right)=b-A \underline{x}^{(k)}=\underline{r}^{(k)}
$$

- The steepest descent method converges for all initial guess $\underline{x}^{(0)}$. Moreover it holds:

$$
\left\|x-x^{(k)}\right\|_{A} \leq\left(\frac{\kappa_{2}(A)-1}{\kappa_{2}(A)+1}\right)^{k}\left\|x-x^{(0)}\right\|_{A}
$$

where $\|v\|_{A}=\sqrt{v^{T} A v}$ is the A-norm. The formula above says that convergence is guaranteed, but can be very slow if A is ill-conditioned (indeed $\kappa_{2}(A)$ very large means that $\left(\frac{\kappa_{2}(A)-1}{\kappa_{2}(A)+1}\right)$ is very close to 1$)$.

Pseudocode for Steepest Descent Method

Steepest Descent Method

Input: $A \in \mathbb{R}^{n \times n}$ SPD, $\underline{b} \in \mathbb{R}^{n}, \underline{x}^{(0)} \in \mathbb{R}^{n}$, tol $\in \mathbb{R}^{+}$, maxiter $\in \mathbb{N}$ $\underline{r}^{(0)}=\underline{b}-A \underline{x}^{(0)}$
for $k=1,2, \ldots$, maxiter:

$$
\begin{aligned}
& \underline{y}=A \underline{r}^{(k-1)} \\
& \alpha_{k-1}=\left(\underline{r}^{(k-1)}, \underline{r}^{(k-1)}\right) /\left(\underline{y}, \underline{r}^{(k-1)}\right) \\
& \underline{x}^{(k)}=\underline{x}^{(k-1)}+\alpha_{k-1} \underline{r}^{(k-1)} \\
& \underline{r}^{(k)}=\underline{b}-A \underline{x}^{(k)}=\underline{r}^{(k-1)}-\alpha_{k-1} \underline{y}
\end{aligned}
$$

If Stopping criteria are satisfied exit the loop
end
Output: $\underline{x}^{(k)}$
Like for all iterative methods, the dominant computational cost at each iteration is given by the matrix-vector product with A, that costs about $2 n^{2}$ FLOPs (n^{2} multiplications and $\sim n^{2}$ sums).

Summary and extensions of gradient methods...

We have our functional $F(\underline{v}):=\frac{1}{2}(A \underline{v}, \underline{v})-(\underline{b}, \underline{v})$ to minimize and use $\underline{x}^{(k+1)}=\underline{x}^{(k)}+\alpha_{k} \underline{p}^{(k)}$, where $p^{(k)}=-\underline{\nabla} F\left(\underline{x}^{(k)}\right)=b-A \underline{x}^{(k)}$. Possible alternatives are:

- to simplify the calculation of $p^{(k)}=-\underline{\nabla} F\left(\underline{x}^{(k)}\right)$, e.g. in the stochastic gradient descent method, used in machine learning: we save time per each iteration at the expenses of an increased number of iterations to reach a given accuracy;
- to find better descent directions $p^{(k)}$, such that the convergence at a given tolerance requires less iterations, as in the conjugate gradient method

Summary and extensions of gradient methods...

We have our functional $F(\underline{v}):=\frac{1}{2}(A \underline{v}, \underline{v})-(\underline{b}, \underline{v})$ to minimize and use $\underline{x}^{(k+1)}=\underline{x}^{(k)}+\alpha_{k} \underline{p}^{(k)}$, where $p^{(k)}=-\underline{\nabla} F\left(\underline{x}^{(k)}\right)=b-A \underline{x}^{(k)}$. Possible alternatives are:

- to simplify the calculation of $p^{(k)}=-\underline{\nabla} F\left(\underline{x}^{(k)}\right)$, e.g. in the stochastic gradient descent method, used in machine learning: we save time per each iteration at the expenses of an increased number of iterations to reach a given accuracy;
- to find better descent directions $p^{(k)}$, such that the convergence at a given tolerance requires less iterations, as in the conjugate gradient method

Steepest descents vs. Conjugate Gradient

Steepest Decents Method Conjugate Gradients Method

Conjugate Gradient method

with $\underline{p}^{(0)}=-\underline{\nabla} F\left(\underline{x}^{(0)}\right)$, at each iteration k take $\underline{p}^{(k)}$ in the plane $\operatorname{span}\left\{\underline{r}^{(k)}, \underline{p}^{(k-1)}\right\}$

$$
\underline{p}^{(k)}=\underline{r}^{(k)}+\beta_{k} \underline{p}^{(k-1)}
$$

where β_{k} is chosen so that $\underline{p}^{(k)}$ is A-orthogonal to $\underline{p}^{(k-1)}$, i.e. $\left(\underline{p}^{(k)}\right)^{T} A \underline{p}^{(k-1)}=0$ (orthogonal in the scalar product associated with A). It can be proven that

$$
\left(\underline{p}^{(k)}\right)^{T} A \underline{p}^{(j)}=0, \quad j=1, \ldots, k-1
$$

This approach is faster than the steepest descent. Actually, the method converges in less than n iterations ($n=$ dimension of the system), so it can be considered a direct method.

Matlab function: $x=\mathbf{p c g}(A, b, \ldots)$

Pseudocode for Conjugate Gradient Method

Conjugate Gradient Method

Input: $A \in \mathbb{R}^{n \times n}$ SPD, $\underline{b} \in \mathbb{R}^{n}, \underline{x}^{(0)} \in \mathbb{R}^{n}$, tol $\in \mathbb{R}^{+}$, maxiter $\in \mathbb{N}$ $\underline{r}^{(0)}=\underline{b}-A \underline{x}^{(0)}$
$p^{(0)}=\underline{r}^{(0)}$
for $k=1,2, \ldots$, maxiter:

$$
\begin{aligned}
& \underline{y}=A \underline{p}^{(k-1)} \\
& \alpha_{k-1}=\left(p^{(k-1)}, \underline{r}^{(k-1)}\right) /\left(\underline{y}, \underline{p}^{(k-1)}\right) \\
& \underline{x}^{(k)}=\underline{x}^{(\bar{k}-1)}+\alpha_{k-1} \underline{p}^{(k-1)} \\
& \underline{r}^{(k)}=\underline{b}-A \underline{x}^{(k)}=\underline{r}^{(k-1)}-\alpha_{k-1}^{y} \\
& \beta_{k-1}=\left(\underline{y}, \underline{r}^{(k)}\right) /\left(\underline{y}, \underline{p}^{(k-1)}\right) \\
& \underline{p}^{(k)}=\underline{r}^{(k)}-\beta_{k-1} \underline{p}^{(k-1)}
\end{aligned}
$$

If Stopping criteria are satisfied exit the loop
end
Output: $\underline{x}^{(k)}$

Convergence of the Conjugate Gradient Method

We have the following bound on the relative error for CG:

$$
\left\|x-x^{(k)}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa_{2}(A)}-1}{\sqrt{\kappa_{2}(A)}+1}\right)^{k}\left\|x-x^{(0)}\right\|_{A}
$$

recalling that, when A is SPD, it holds

$$
\kappa_{2}(A):=\|A\|\left\|A^{-1}\right\|=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}
$$

Then the larger $\kappa_{2}(A)$ is, the slower the method converges, however, it should be noted that if we compare:

- the reducing factor of k Steepest Descend iterations:

$$
\left(\frac{\kappa_{2}(A)-1}{\kappa_{2}(A)+1}\right)^{k} \text { and }
$$

- the reducing factor of k Conjugate Gradient iter.:

$$
2\left(\frac{\sqrt{\kappa_{2}(A)}-1}{\sqrt{\kappa_{2}(A)}+1}\right)^{k}
$$

we see that Conjugate Gradient is more favourable.

Preconditioners

To speedup the convergence, we can use a preconditioner. In this case, the original linear system $A x=b$ with the equivalent one

$$
P^{-1} A x=P^{-1} b
$$

where P is a nonsingular matrix called preconditioner.
A good preconditioner has two features:

- An iterative method applied to the new system should converge in less iterations than for the original system. This typically means that the eigenvalues of $P^{-1} A$ should be clustered (in the case of CG, this means $\left.\lambda_{\max }\left(P^{-1} A\right) \approx \lambda_{\text {min }}\left(P^{-1} A\right)\right)$.
- At each iteration of an iterative method we need to compute a matrix-vector product with the system matrix. In the preconditioned case, this is done in two steps

$$
v \longrightarrow A v \longrightarrow P^{-1}(A v)
$$

Thus, computing matrix-vector products with P^{-1} (or equivalently solving a linear system with P) should be fast. Note that we never need to compute the matrix $P^{-1} A$ explicitly.

Preconditioners

- Hence a good preconditioner P should be as similar as possible to A, while being easy to invert:
- Let us consider two extreme cases: $P=I_{n}$ and $P=A$
- If $P=A, P^{-1} A=I_{n}$ and any iterative method would converge in just 1 iteration (note that $\lambda_{\text {max }}\left(P^{-1} A\right)=\lambda_{\text {min }}\left(P^{-1} A\right)=1$). On the other hand, applying P^{-1} is as difficult as solving the original system.
- If $P=I_{n}$, then applying P^{-1} has no cost. On the other hand $P^{-1} A=A$, so there is no reduction in the number od iterations.
- A good preconditioner should find a balance between these two extremes.

Preconditioning for CG

- In the case of CG, similarly as A is required to be SPD, also the preconditioner is required to be SPD.
- In general, the problem of finding a good preconditioner is very problem-specific.
- Some black-box preconditioners:
- Jacobi: $P=\operatorname{diag}(A)$.
- Symmetric Gauss-Seidel: $P=L_{*} \operatorname{diag}(A)^{-1} L_{*}^{T}$ where $L_{*}=\operatorname{tril}(A)$.
- Incomplete Cholesky: An approximated Cholesky factorisation, where no fill-in is introduced:

$$
P=L L^{T} \approx A, \quad \text { such that if } A_{i j}=0 \Longrightarrow L_{i j}=0
$$

In other words, we impose that L has the same sparsity pattern as A.

Sparse matrices and iterative solvers

Recall that:

- The sparsity of an $n \times n$ matrix A is

$$
\frac{n n z(A)}{n^{2}}
$$

where $\operatorname{nnz}(A)=\#$ of nonzero entries in A. A matrix is sparse if its sparsity is $\ll 1$.

- Sparse matrices are extremely common in engineering and computer science, e.g., Network theory, data analysis and machine learning, discretization of differential equations.
- direct solvers suffer from the fill-in phenomenon.

Sparse matrices and iterative solvers

- Recall that at each iteration of an iterative we have to compute a matrix-vector product

$$
v \longrightarrow A v
$$

If A is sparse, only the nonzero entries of A are involved in the computation:

$$
(A v)_{i}=\sum_{j=1}^{n} a_{i j} v_{j}=\sum_{j s . t . a_{i j \neq 0}}^{n} a_{i j} v_{j}
$$

The cost of a matrix-vector product is then $2 \mathrm{nnz}(A)$, versus $2 n^{2}$ for dense matrices.

- Iterative solvers do not suffer from fill-in. In particular, the main memory consumption is just the storing of A. Hence iterative methods typically require much less memory than direct methods.

Summary on Linear Systems

 available solvers for $A \underline{x}=\underline{b}$, with $A \in \mathbb{R}^{n \times n}$ non singular...
Direct Methods

Methods	Requirements on A	Cost
GEM $/$ LU	${ }^{1} \operatorname{det}\left(A_{i}\right) \neq 0, i=1, \ldots, n$	$\sim 2 / 3 n^{3}$ FLOPs
GEM $/$ LU + Pivoting	none	$\sim 2 / 3 n^{3}$ FLOPs

${ }^{1} A_{i}$ is the matrix obtained considering only the first i rows and the first i columns of A. This condition is automatically satisfied if A is diagonally dominant or if A is SPD.

Iterative Methods ($\sim 2 n^{2}$ FLOPs for each iteration)

Methods Requirements on A
Sufficient conditions for convergence

Jacobi $\quad A_{i i} \neq 0, i=1, \ldots, n \quad A$ diagonally dominant
Gauss-Seidel $\quad A_{i i} \neq 0, i=1, \ldots, n$
A diagonally dominant or A SPD

Steepest Descent
Method
Conjugate Gradient Method

A SPD
always ensured
always ensured in less than n iterations

